23 research outputs found

    Search strategies of Wikipedia readers

    Get PDF
    The quest for information is one of the most common activity of human beings. Despite the the impressive progress of search engines, not to miss the needed piece of information could be still very tough, as well as to acquire specific competences and knowledge by shaping and following the proper learning paths. Indeed, the need to find sensible paths in information networks is one of the biggest challenges of our societies and, to effectively address it, it is important to investigate the strategies adopted by human users to cope with the cognitive bottleneck of finding their way in a growing sea of information. Here we focus on the case of Wikipedia and investigate a recently released dataset about users’ click on the English Wikipedia, namely the English Wikipedia Clickstream. We perform a semantically charged analysis to uncover the general patterns followed by information seekers in the multi-dimensional space of Wikipedia topics/categories. We discover the existence of well defined strategies in which users tend to start from very general, i.e., semantically broad, pages and progressively narrow down the scope of their navigation, while keeping a growing semantic coherence. This is unlike strategies associated to tasks with predefined search goals, namely the case of the Wikispeedia game. In this case users first move from the ‘particular’ to the ‘universal’ before focusing down again to the required target. The clear picture offered here represents a very important stepping stone towards a better design of information networks and recommendation strategies, as well as the construction of radically new learning paths

    Autophagy–physiology and pathophysiology

    Get PDF
    “Autophagy” is a highly conserved pathway for degradation, by which wasted intracellular macromolecules are delivered to lysosomes, where they are degraded into biologically active monomers such as amino acids that are subsequently re-used to maintain cellular metabolic turnover and homeostasis. Recent genetic studies have shown that mice lacking an autophagy-related gene (Atg5 or Atg7) cannot survive longer than 12 h after birth because of nutrient shortage. Moreover, tissue-specific impairment of autophagy in central nervous system tissue causes massive loss of neurons, resulting in neurodegeneration, while impaired autophagy in liver tissue causes accumulation of wasted organelles, leading to hepatomegaly. Although autophagy generally prevents cell death, our recent study using conditional Atg7-deficient mice in CNS tissue has demonstrated the presence of autophagic neuron death in the hippocampus after neonatal hypoxic/ischemic brain injury. Thus, recent genetic studies have shown that autophagy is involved in various cellular functions. In this review, we introduce physiological and pathophysiological roles of autophagy

    Of yeast, mice and men: MAMs come in two flavors

    Full text link

    Seipin and the membrane-shaping protein Pex30 cooperate in organelle budding from the endoplasmic reticulum

    Get PDF
    Lipid droplets (LDs) and peroxisomes are ubiquitous organelles with central roles in eukaryotic cells. Although the mechanisms involved in biogenesis of these organelles remain elusive, both seem to require the endoplasmic reticulum (ER). Here we show that in yeast the ER budding of these structurally unrelated organelles has remarkably similar requirements and involves cooperation between Pex30 and the seipin complex. In the absence of these components, budding of both LDs and peroxisomes is inhibited, leading to the ER accumulation of their respective constituent molecules, such as triacylglycerols and peroxisomal membrane proteins, whereas COPII vesicle formation remains unaffected. This phenotype can be reversed by remodeling ER phospholipid composition highlighting a key function of these lipids in organelle biogenesis. We propose that seipin and Pex30 act in concert to organize membrane domains permissive for organelle budding, and that may have a lipid composition distinct from the bulk ER
    corecore